On the Exact Cryptographic Hardness of Finding a Nash Equilibrium

نویسندگان

  • Sanjam Garg
  • Omkant Pandey
  • Akshayaram Srinivasan
چکیده

The exact hardness of computing a Nash equilibrium is a fundamental open question in algorithmic game theory. This problem is complete for the complexity class PPAD. It is well known that problems in PPAD cannot be NP-complete unless NP = coNP. Therefore, a natural direction is to reduce the hardness of PPAD to the hardness of problems used in cryptography. Bitansky, Paneth, and Rosen [FOCS 2015] prove the hardness of PPAD assuming the existence of quasi-polynomially hard indistinguishability obfuscation and sub-exponentially hard one-way functions. This leaves open the possibility of basing PPAD hardness on simpler, polynomially hard, computational assumptions. We make further progress in this direction and reduce PPAD hardness directly to polynomially hard assumptions. Our first result proves hardness of PPAD assuming the existence of polynomially hard indistinguishability obfuscation (iO) and one-way permutations. While this improves upon Bitansky et al.’s work, it does not give us a reduction to simpler, polynomially hard computational assumption because constructions of iO inherently seems to require assumptions with sub-exponential hardness. In contrast, public key functional encryption is a much simpler primitive and does not suffer from this drawback. Our second result shows that PPAD hardness can be based on polynomially hard public key functional encryption and oneway permutations. Our results further demonstrate the power of polynomially hard public key functional encryption which is believed to be weaker than indistinguishability obfuscation. ∗University of California, Berkeley, [email protected] †University of California, Berkeley, [email protected] ‡University of California, Berkeley, [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Not Just an Empty Threat: Subgame-Perfect Equilibrium in Repeated Games Played by Computationally Bounded Players

We study the problem of finding a subgame-perfect equilibrium in repeated games. In earlier work [Halpern, Pass and Seeman 2014], we showed how to efficiently find an (approximate) Nash equilibrium if assuming that players are computationally bounded (and making standard cryptographic hardness assumptions); in contrast, as demonstrated in the work of Borgs et al. [2010], unless we restrict to c...

متن کامل

Approximating the best Nash Equilibrium in n -time breaks the Exponential Time Hypothesis

The celebrated PPAD hardness result for finding an exact Nash equilibrium in a two-player game initiated a quest for finding approximate Nash equilibria efficiently, and is one of the major open questions in algorithmic game theory. We study the computational complexity of finding an ε-approximate Nash equilibrium with good social welfare. Hazan and Krauthgamer and subsequent improvements showe...

متن کامل

How hard is it to approximate the best Nash equilibrium?

The quest for a PTAS for Nash equilibrium in a two-player game seeks to circumvent the PPADcompleteness of an (exact) Nash equilibrium by finding an approximate equilibrium, and has emerged as a major open question in Algorithmic Game Theory. A closely related problem is that of finding an equilibrium maximizing a certain objective, such as the social welfare. This optimization problem was show...

متن کامل

Revisiting the Cryptographic Hardness of Finding a Nash Equilibrium

The exact hardness of computing a Nash equilibrium is a fundamental open question in algorithmic game theory. This problem is complete for the complexity class PPAD. It is well known that problems in PPAD cannot be NP-complete unless NP = coNP. Therefore, a natural direction is to reduce the hardness of PPAD to the hardness of problems used in cryptography. Bitansky, Paneth, and Rosen [FOCS 201...

متن کامل

Inapproximability Results for Approximate Nash Equilibria

We study the problem of finding approximate Nash equilibria that satisfy certain conditions, such as providing good social welfare. In particular, we study the problem ǫ-NE δ-SW: find an ǫ-approximate Nash equilibrium (ǫ-NE) that is within δ of the best social welfare achievable by an ǫ-NE. Our main result is that, if the randomized exponential-time hypothesis (RETH) is true, then solving ( 1 8...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015